
GRD40A 400W POWER

24/28Vdc MIL LOW PROFILE POWER SUPPLY MIL-STD-1275/MIL-STD704 COMPATIBLE **Configurable Dual Channel**

Product Information

limiter and input surge limiter in order to fully comply with usual mil input bus standard such as Mil-Std-1275, and Mil-Std-704. The internal limiter sustains input bus disturbances from 12 Vdc level given by MIL-STD1275 IES (initial engagement surge), to 100V dc surge level. Several fixed output voltages from 3.3Vdc to trimmed from 10% to 110% of nominal value. A share function allows connection of several power supply can be operated with a baseplate market.

The GRD40A designates a full family of 400W temperature ranging from -40 to 85°C. The low profile military grade C.O.T.S power GRD40A comes with 2 independent and supplies. The board includes EMI filters, isolated 200W output channels that can be reverse polarity protection, inrush current connected in series, parallel or with a common line, and +/- outputs. The power connections are made through 4 mm studs, the monitoring signals are available on standard low power connectors. With 180mm X 140mm X 28mm dimensions, the board can be ordered uncoated, coated, or with a metallic chassis hood. The GRD40A is particularly suitable for 48Vdc are available. The outputs can be demanding projects in various fields of application like ground borne vehicle, or navy. Plug and play, the GRD40A is intended to boards in parallel to boost output power. The speed up design processes reducing time to

190 x 140 x 28 mm: In: : 7.5 x 5.5 x 1.09

REDEFINING THE SOURCES OF POWER

Selection Guide

Part Number	Nominal Output Voltage (Vdc)	Output Current (Adc)	Output Power (W)	Part Number	Nominal Output Voltage (Vdc)	Output Current (Adc)	Output Power (W)
GRD40A-H-P	48	8.33	400	GRD40A-H-2E	+/-12	+/-33.3	200-200
GRD40A-H-J	28	13.3	373	GRD40A-H-2F	+/-15	+/-26.7	200-200
GRD40A-H-I	24	16.7	400	GRD40A-H-2I	+/-24	+/-16.7	200-200
GRD40A-H-F	15	26.7	400	GRD40A-H-IC	24-5	16.7-35	200-170
GRD40A-H-E	12	33.3	400	GRD40A-H-IE	24-12	16.7-33.3	200-200
GRD40A-H-C	5	70	350	GRD40A-H-IF	24-15	16.7-26.7	200-200
GRD40A-H-B	3.3	70	231	GRD40A-H-FB	24-3.3	16.7-35	200-115
GRD40A-H-CC	5-5	35-35	170-170	GRD40A-H-FC	15-5	26.7-35	200-170
GRD40A-H-EE	12-12	33.3-33.3	200-200	GRD40A-H-FE	15-12	26.7-33.3	200-200
GRD40A-H-FF	15-15	26.7-26.7	200-200	GRD40A-H-EB	12-3.3	33.3-35	200-115
GRD40A-H-II	24-24	16.7-16.7	200-200	GRD40A-H-EC	12-5	33.3-35	200-170
GRD40A-H-2C	+/-5	+/-35	+/-170	GRD40A-H-CB	5-3.3	35-35	170-115
Options : /C carter /S screen	a /T- 55°C /V Coating						

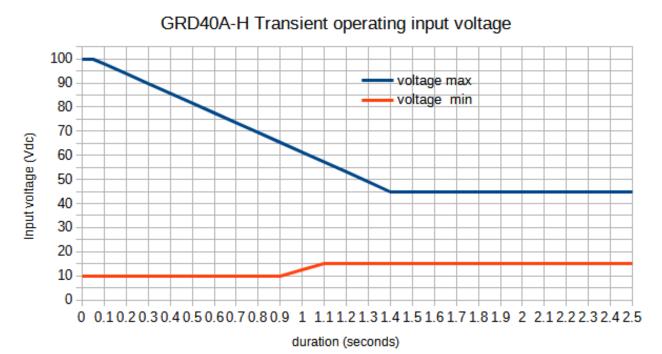
Features

- 10-45/100 Vdc input.
- Power up to 400W
- **Reverse Polarity protection**
- Inrush current limiter
- Output 3.3 to 52Vdc
- Dual configurable channel
- Board Parallelizable
- Efficiency up to 88%
- Galvanic isolation 1500Vdc
- Output voltage trim
- -40 to 85°C base-plate
- Thermal protection
- EU RoHs process

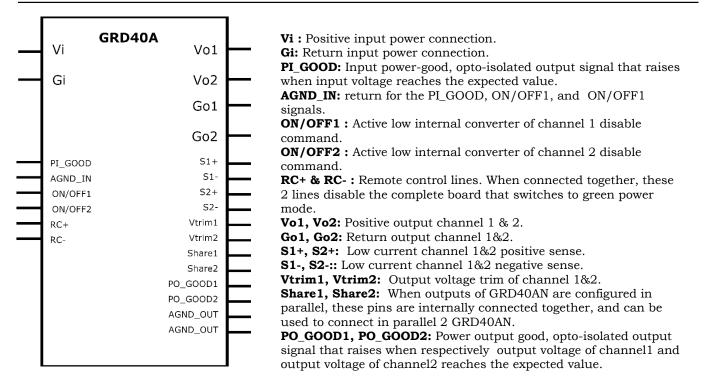
Standards

- Mil-STD -704
- Mil-STD-1275
- Mil-STD-461

Applications


- Mil-Ground-borne
- Embedded Avionic
- Naval

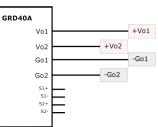
GRD40A 400W POWER



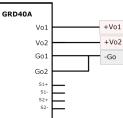
1-PRODUCT INTRODUCTION

Max non operating input voltage = 202Vdc

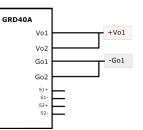
TERMINALS FUNCTION



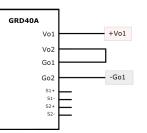
GRD40A 400W POWER


1-PRODUCT INTRODUCTION

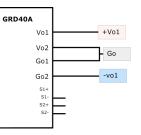
OUTPUT CONFIGURATION :



Output configuration \mathbf{A} :2 isolated channels



Output configuration \mathbf{B} :2 independant channels common Go



Output configuration **C**: Parallel connection mode

Output configuration **D** :Series connection mode

Output configuration \mathbf{E} : Symetrical mode 2 chan-

GRD40A 400W POWER

REDEFINING THE SOURCES OF POWER

2-ELECTRICAL SPECIFICATIONS

Data are valid at +25°C, unl	ess otherwise specified			
Parameter	Conditions	Limit	Units	H input
INPUT				
Nominal Input Voltage (Ui)	Full temperature range	Nominal	Vdc	28
Undervoltage lock-out (UVLO)	Turn-on voltage turn-off voltage Pout 200W	Max. Min.	Vdc	11.1 9.1
Start up time	Ui Full load resistive load	Maximum	ms	30
No load input Power	Ui	Maximum	W	3.3
Input power in inhibit mode	Ui	Maximum	W	0.2
Maximum input Current	Full input voltage range	Maximum steady state	А	30
	i un input voltago rango	Maximum Transient	А	(40)
Maximum input ripple Current	Ui Full load resistive load			Mil-Std-461 102 compliant

OUTPUT

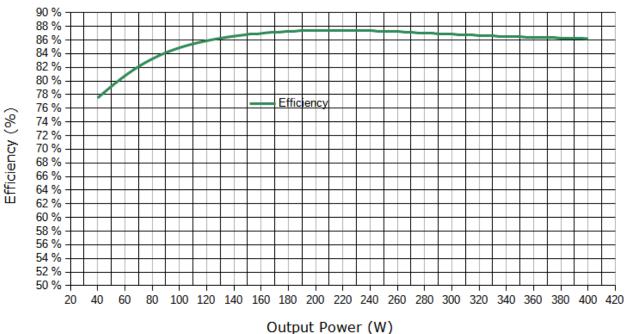
Set Point accuracy	Point accuracy Ui 75% load		%	+/- 2
Output regulationVi min. To Vi max(Line+Load+Thermal)0% to full load		Maximum	%	+/- 1
Output ripple voltage E output (12V) I output (24V)	Vi min. To Vi max	Typical	mVpp	220 480
Output voltage trim Range As function of nominal Output voltage Unchanged Max output current !		Minimum Maximum	% %	10 110
Power Efficiency Ui 75% load		Typical	%	86
Maximum capacitive load	Ui	Maximum	μF	5000
Switching Frequency Full input voltage range*		Min Max	Khz	280 210
Isolation strength Input/Output Input/baseplate Output/ baseplate Output1 / Output2			Vdc/mn. Vdc/mn. Vdc/mn. Vdc/mn.	1500 500 500 TBD
Isolation strength	Tested at 500Vdc		MΩ	500

*Main apparent switching frequency tone may be close to 500kHz as result of 250khz internal biphase synchronization

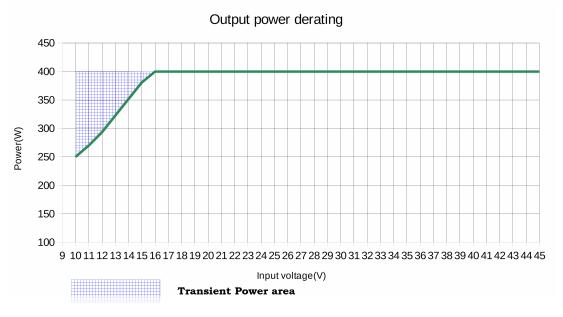
GRD40A 400W POWER

Data are valid at +25°C, unless otherw	vise specified			
Parameter	Conditions	Limit	Units	H input
PROTECTIONS & CONTROLS				
Refers to MG	DM201 datasheet for complet	e output prote	ction description	
Over Current Protection (OCP) Protection mode			FOLD BACK	
Over Temperature Protection	Thermostat			
Converters OTP level Yront-end OTP level	with hysteresis cycle (Base plate Temperature)	Max./hyst	°C	TBD/TBD TBD/TBD
CONTROLS and MONITORING				
start-up time	Ui nom.	Maximum	ms	30
On/Off module enable voltage	Ui nom. 5mA max bias current	Minimum Maximum	Vdc Vdc	3,5 5.5
Dn/Off module disable voltage	Ui nom.	Maximum Minimum	Vdc Vdc	1 0
Rc-Rc+ control dry contact impedance	Ui nom. Disable mode	Maximum	Ohms	100
RC-Rc+ max voltage	Ui nom. Enable mode	Maximum	Vdc	15
I_GOOD trigger level	Ui measured at input connector Pout = 100W	Minimum	Vdc	10.5
PI_GOOD max Vce voltage PI_GOOD max sink current (Ic)	For current < 2.5mA IC For voltage < 10 Vdc .	Maximum	Vdc mAdc	60V 15
O_GOOD(1)(2) trigger level	Ui nom. As function of output voltage	Minimum	%	95%
O_GOOD max Vce voltage O_GOOD max sink current (Ic)	For current < 2.5mA For voltage < 10 Vdc .	Maximum	Vdc mAdc	60V 15
HERMAL				
Operating temperature range	Ui nominal Full power Base Plate temperature	Minimum Maximum	°C	-40 85
Base Plate to Air thermal resistance	Ui nom. Full Load	Typical	°C/W	3
RELIABILITY Jean time between failures (MTBF)				
According to Mil HDBK 217F	Ground fixed (Gf) 40°C Ground fixed (Gf) 85°C		Hours	TBD
According to IEC-62380-TR			Hours	TBD

FC21-108 04/21 Revision PR page5 /13



GRD40A 400W POWER


3-PERFORMANCE

Efficiency

Typical Efficiency GRD40A-H-I @ 25°C

Power derating :

GRD40A 400W POWER

4-APPLICATION NOTE

4.1-THERMAL MANAGEMENT

The GRD40A thermal management can be achieved in 2 different ways:

Air cooling : Due to its high base-plate to air thermal resistance air cooling (with no heat-sink or cold plate) is possible for GRD40A-N only for low power or short duration operation. The max ambient temperature will be:

$$Tamb = BpT - Po * \left(\frac{1}{eff} - 1\right) * Rth$$

 T_{amb} = max ambient temperature.

BpT = max base plate temperature.

eff = efficiency

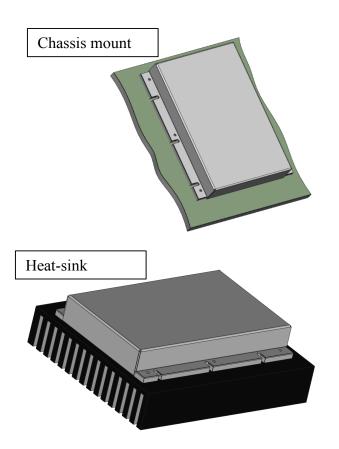
R_{th} = baseplate to air thermal resistance

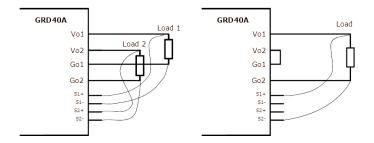
Cooling through a heat-sink or chassis mount:

The most common use of GRD40A is application where Board baseplate is screwed down to a heat-sink or the cold plate of a chassis. In this case The max ambient temperature will be:

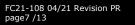
$$Tamb = BpT - Po * \left(\frac{1}{eff} - 1\right) * Rth$$

T_{amb} = max ambient temperature.


BpT = max base plate temperature.


eff = efficiency

 R_{th} = heat-sink or chassis to air thermal resistance.


4.2-SENSE FUNCTION

Sense terminals can be connected to the load to compensate for possible output cables losses. Sense terminals can compensate up to 10% output voltage drop. If not used senses should not be connected. When outputs channels are connected in series and sense function is implemented, only Sense1+ and Sense2must to be used.

REDEFINING THE SOURCES OF POWER

GRD40A 400W POWER

Channel disabling switch

Board disabling switch

REDEFINING THE SOURCES OF POWER

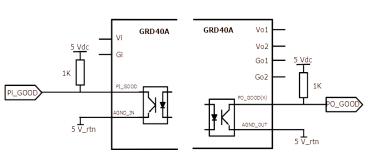
4-APPLICATION NOTE

4.3-ON-OFF FUNCTION

On/Off1, **On/Off2**: Each channel of the board can be disabled individually when output configuration is not "connected in series". The channel is disable when applying a voltage between On/off1 or On/off2 and AGND_IN. See electrical specification for voltage and current values of On/off signal. The channels are enabled with On/off(x) unconnected. This On/off(X) control is galvanically isolated, from other parts of the board electrical circuit.

When the outputs are "connected in series" both the On/off(x) signal will disable the 2 channels.

When On/Off(x) are active only internal dc/dc converters are disabled, while the front-end of the board is still in operation.


Rc+-Rc-: when Rc+ and Rc- are connected together, the input stage of the board is no longer biased, and whole consumption is reduced to the minimum value. See electrical specification section for more details.

These Rc+ and Rc- are not galvanically isolated, from other parts of the board electrical circuit, therefore it is recommended to control those pins with a dry contact only.

The GRD40A provides user with input power good (PI_GOOD) and output power good (PO_GOOD1, PO_GOOD2) signals that are activated when respectively input voltage and outputs voltage reach their expected values. The signals are provided through transistor of opto-coupler that get saturated when board operate in nominal conditions, and transistor get open when a input or output voltage are not in their nominal PLGOOD values.

Warning : When an output voltage is trimmed, the corresponding PO_GOOD will have threshold values changed. The opposite diagrams show a suggested circuit to use power good signals in a 0 -5V range.

GRD40A

GRD40A

Vi

Gi

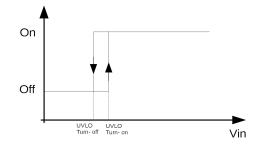
On/Off(X)

Vi

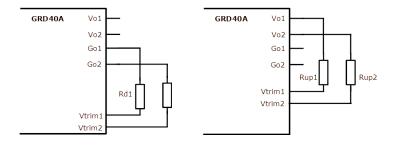
Gi

RC+

RC-


GRD40A 400W POWER

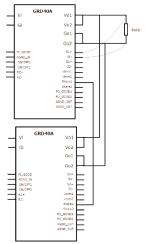
4-APPLICATION NOTE

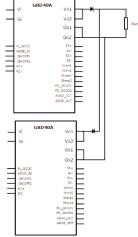

4.4-INPUT UNDERLOCKAGE VOLTAGE (UVLO)

An undervoltage protection is implemented to keep the converter off as long as the input voltage has not reached the UVLO turn-on threshold (see electrical specification for threshold value)

4.5-OUTPUT VOLTAGE TRIM

Outputs voltages of GRD40A can be trimmed up and down according to values specified in § electrical specifications. To trim outputs connect $\operatorname{Rup}(x)$ as described into opposite diagram. To trim down, connect Rd(x) as described into opposite diagram. Please refer to MGDM201 datasheet for $\operatorname{Rup}(x)$ or Rd(x) calculation. Each channel can have its output voltage trim independently, but when connected in series, the current into each channel being the same, it will define the channel output power.




RED

4.6-PARALLELING And REDUNDANCY FUNCTION

<u>Paralleling function</u>: in order to boost the output power of a power supply, it is possible to connect outputs of several GRD40A in parallel, with current sharing activated. When the 2 channels off a GRD40A are connected in parallel, the Share1 and Share2 signals of this GRD40A are connected together, only one of them need to be used to parallel several GRD40A-N.

<u>Redundancy function</u>: Several GRD40A can be connected to the same load for redundancy purposes. In this case, Oring diodes must be used (their losses can be compensated using trim function) If GRD40A-N are connected in redundancy mode, the shares(X) pins and On/off 2 should be left unconnected.

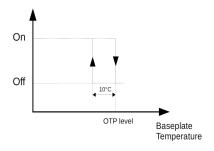
EFINING THE SOURCES OF POWER

FC21-108 04/21 Revision PR page9 /13

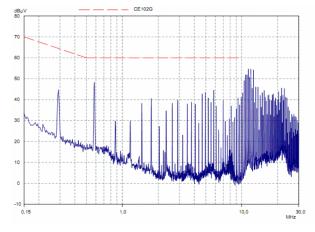
GRD40A 400W POWER

4-APPLICATION NOTE

4.7-OUTPUT OVERVOLTAGE PROTECTION (OVP)

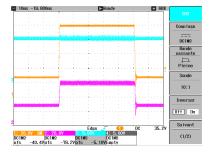

Please refer to MGDM201 datasheet for over voltage protection

4.8-OVER-CURRENT PROTECTION (OCP)

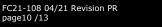

Please refer to MGDM201 datasheet for over current protection

4.9-OVER-TEMPERATURE PROTECTION

A thermal protection device adjusted at the OTP level (see characteristics) will inhibit the board as long as the overheat is present and will resume to normal operation automatically once the overheat is removed. The effectiveness of the OTP function is guaranteed only when the board is mounted on a heatsink.



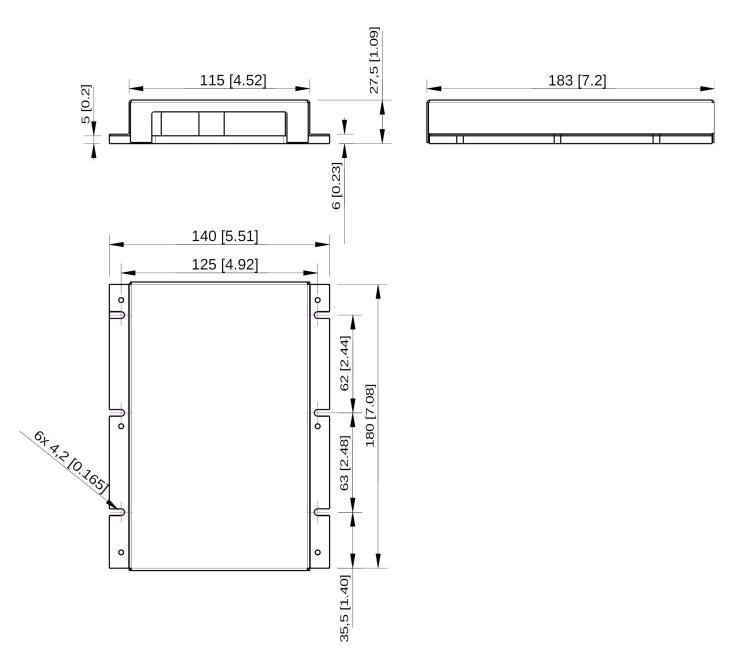
4.10-Mil STD 461 CONDUCTED EMI COMPLIANCE



GRD40A-H-I Vin= 28V Pout =400W

4.11-1275 SURGE COMPLIANCE

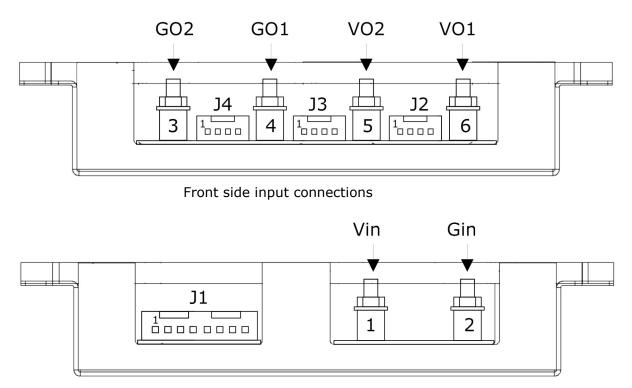
GRD40A-H–F Vin= Ch1, Vout =Ch3 *Ch2 shows the internal voltage at MGDS201 input

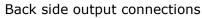

GRD40A 400W POWER

4-APPLICATION NOTE

4.12-MECHANICAL DRAWINGS

<u>Material :</u> baseplate : aluminium Cover : Inox SUS 430 with Nickel plating Cover : thickness 1mm




GRD40A 400W POWER

4-APPLICATION NOTE

4.13-CONNECTION, PRODUCT MARKING

Connector	Pin	Designation
Stud	1	+Input(Vin)
Stud	2	-Input(Gin)
Stud	3	-Output 2(Go2)
Stud	4	-Output 1(Go1)
Stud	5	+Output 2(Vo2)
Stud	6	+Output 1(Vo1)

Connector	Pin	Designation
J1	1	PI_GOOD
J1	2	AGND_IN
J1	3	On/Off1
J1	4	On/Off2
J1	5	DNC
J1	6	DNC
J1	7	RC+
J1	8	RC-

Connector	Pin	Designation
J2	1	S1+
J2	2	VTRIM1
J2	3	S1-
J2	4	SHARE1

Connector	Pin	Designation
J4	1	S2+
J4	2	VTRIM2
J4	3	S2-
J4	4	SHARE2

Connector	Pin	Designation
J3	1	AGND_OUT
J3	2	PO_GOOD2
33	3	AGND_OUT
J3	4	PO_GOOD1

GRD40A 400W POWER

International HeadquartersNorth American HeadquartersGAÏA Converter - FranceGAÏA Converter Canada, Inc18 rue caroline Aigle1405 Transcanada Hwy, Suite 52033186 LE HAILLAN - FRANCEDORVAL, QUEBEC, H9P 2V9Tel. : + (33)-5-57-92-12-80Tel. : (514)-333-3169Fax : + (33)-5-57-92-12-89Fax : (514)-333-4519

Information given in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequence of its use nor for any infringement of patents or other rights of third parties which may result from its use. These products are sold only according to GAIA Converter general conditions of sale, unless otherwise confirmed by writing. Specifications subject to change without notice.

